

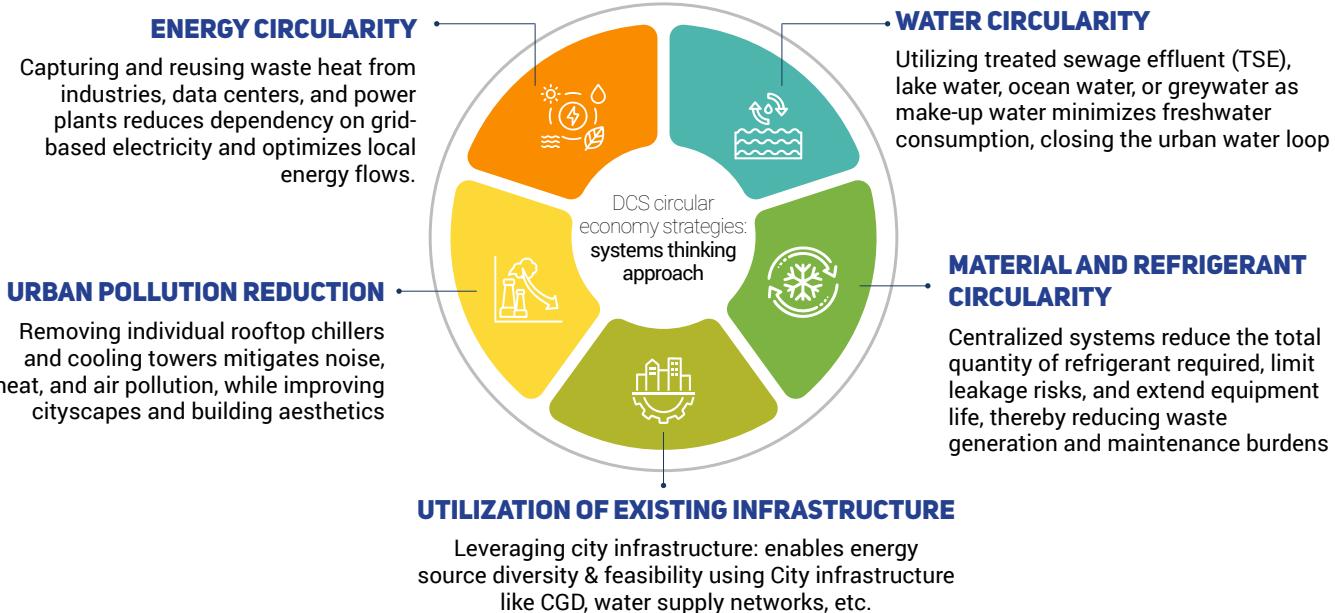
on the basis of a decision
by the German Bundestag

DISTRICT COOLING

DRIVER OF RESOURCE CIRCULARITY

COOLING CHALLENGES AND THE CASE FOR A CIRCULAR URBAN TRANSITION

India's built environment faces intensifying heat stress due to rising global temperatures, expanding urbanization, and changing land-use patterns. Frequent and prolonged heatwaves are straining infrastructure and intensifying cooling demand across sectors. Without intervention, the surge in conventional air-conditioning could significantly raise energy use and emissions, as well as leading to economic losses and undermining climate goals.


A shift toward circular, resource-efficient cooling such as District Cooling Systems (DCS) is essential to ensure a resilient, low-carbon future.

DISTRICT COOLING: THE ENGINE OF RESOURCE CIRCULARITY

DCS are centralized networks that produce and distribute chilled water for indoor cooling to industrial, commercial, and residential buildings through insulated closed loop and industrial grade underground pipe network. DCS operationalizes circular economy principles by facilitating the circular use of energy, water, and materials within the built environment as shown in Figure 2:

Figure 2: DCS circularity enablers

Figure 1: View of DC Plant and TES Tank at Urban City (representative illustration)

Moreover, DCS strengthens system resilience by integrating renewable and waste-based energy resources:

Waste-to-Energy (WtE): Urban solid waste can be converted into thermal energy to power district cooling systems, as demonstrated in Barcelona's Districlima, where steam from a WtE facility drives the cooling network.

Thermal Energy Storage (TES): Enables off-peak cooling production and storage, optimizing load management, supporting renewable integration, and reducing energy costs.

Distributed Renewable Energy (DRE): Integration of solar photovoltaic (PV) or hybrid energy systems further lowers carbon emissions and grid dependency.

Beyond energy and resource efficiency, DCS also enhances urban space optimization and capital productivity. By replacing decentralized chiller installations, buildings can reclaim up to 75% of mechanical plant space, which can be repurposed for green landscapes, rooftop solar systems, or additional leasable areas.

DISTRICT COOLING AS A CORNERSTONE OF CIRCULAR, AND REGENERATIVE URBAN SYSTEMS

◎ **Global Momentum:** District cooling systems may form the backbone of circular cities, transforming waste heat into valuable energy. Cities like Helsinki, Copenhagen, and Stockholm showcase how surplus industrial and data center heat can meet over 80% of urban cooling demand, enhancing energy security and liveability.

◎ **India's Transition:** The India Cooling Action Plan (ICAP) identifies DCS as a scalable, low-carbon urban cooling pathway. Flagship examples like GIFT City and Hyderabad Pharma City highlight its efficiency and PPP-driven potential in advancing India's circular economy and net-zero goals.

CONCLUSION: DISTRICT COOLING AS A PILLAR OF CIRCULAR AND CLIMATE-RESILIENT CITIES

District Cooling represents a paradigm shift, from fragmented, high-emission cooling to integrated, resource-efficient urban systems. By connecting the dots and interlinking energy, water, and waste streams loops, DCS aligns perfectly with India's Net Zero 2070 and Resource Efficiency and Circular Economy goals. More than just an efficient utility, it serves as a systemic design intervention—redefining urban metabolism from a linear model to a circular one, and paving the path toward regenerative, climate-resilient, and resource circular city planning.

Published by

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Project

Energy Efficient Cooling

Registered offices

Bonn and Eschborn, Germany

T +49 61 96 79-0
F +49 61 96 79-11 15
E info@giz.de
I www.giz.de/India

Bureau of Energy Efficiency,

Ministry of Power

West Block 2,
R.K Puram, Sector 1
New Delhi – 110066, India

On behalf of

Federal Ministry for
Economic Affairs and
Climate Action (BMWK)

Responsible

Nitin Jain
nitin.jain@giz.de

October 2025